Adhesives for Medical Devices

Permabond Adhesives for Medical Devices

Permabond's medical device grade cyanoacrylate and UV-curable adhesives have been specially formulated to bond plastics and other materials commonly found in medical device manufacture. Permabond's technical team can help you select the most appropriate adhesive for your application or discuss your requirements for a custom formulation.

How do Permabond cyanoacrylate adhesives work? Permabond cyanoacrylate adhesives are onepart adhesives that cure by reacting with minute traces of moisture on the surface of the material being bonded. They cure in seconds at ambient temperatures and have been formulated to bond flexible or rigid surfaces made from a wide range of plastics, rubbers or metals.

Permabond cyanoacrylates are available in a range of viscosities and material adhesion capabilities. These adhesives are formulated to bond a variety of porous and non-porous surfaces and to rigid or flexible materials.

Which sterilisation procedures will the 4C range withstand?
Ethylene oxide sterilisation
Gamma irradiation
UV-irradiation
Not suitable for autoclave sterilisation.

Typical Applications:

Catheter bonding

 Bonding components for breathing masks
 Tacking wires and bonding materials for electro-cardiogram pads

- Bonding connectors to tubes
- Disposable scalpals bonding blade to handle
- Bonding sponge swabs to swab stick

Benefits of cyanoacrylates

Cure in seconds - ideal for high-speed production
 No need for curing equipment

Form high-strength bonds - often exceeding that of the substrate material.

Colourless and transparent for a clean, aesthetically pleasing finish.

Can adhere to difficult-to-bond materials

Products pass USP Class VI and cytotoxicity testing.

How do Permabond UV-curable adhesives work? UV curable adhesives cure during exposure to ultra violet light. The adhesives contain photo-initiators that react to specific wavelengths, causing the curing process to begin.

UV adhesives do not dissolve, melt or weaken the two components. They form strong chemical bonds between the two substrates and provide a high strength alternative to

other joining methods. They can be used to replace solvent welding to help reduce stress cracking and to increase bond strength and performance.

UV-curables are also a good alternative to ultrasonic welding as they are more able to cope with gaps or varying tolerances, this helps reduce reject rates.

Typical Applications: Face mask bonding Needle bonding Bonding connectors Catheter bonding Blood collection reservoirs

Benefits of UV-curables

 Cure in seconds - ideal for high-speed production lines
 Form high-strength bonds - often exceeding that of the substrate material.

Colourless and transparent for a clean, aesthetically pleasing finish.
 Can adhere to difficult-to-bond materials

www.permabond.com • USHelpline - 800-640-7599 • UK - 0800 975 9800 Asia • 00 886 939 49 3310 • General Enquiries • +44(0)1962 711661

Permabond Cyanoacrylate Product Data

PHYSICAL PROPERTIES	4C10	4C20		4C30	4C40
Appearance	Colourless, transparent	Colour transpa		Colourless, transparent	Colourless, transparent
Viscosity @ 25°C	40 mPa.s	500 m	Pa.s	1,500 mPa.s	2,000 mPa.s
Density	1.05	1.05		1.05	1.05
Flash Point	82°C	82°C		82°C	82°C
Base Compound	Ethyl cyanoacrylate	Ethyl c	yanoacrylate	Ethyl cyanoacrylate	Ethyl cyanoacrylate
Cytotoxicity Approval	Pass	Pass		Pass	Pass
PERFORMANCE PROPERTIES					
Fixture Time (steel)	5-15 seconds	10-30	seconds	15-50 seconds	<10 seconds
(nitrile rubber)	5-15 seconds	10-25	seconds	15-40 seconds	< 5 seconds
(phenolic)	5-10 seconds	10-25	seconds	15-40 seconds	< 5 seconds
Lap shear strength (steel)	12 MPa	14 MPa		14 MPa	14 MPa
(aluminium)	7 MPa	8 MPa		8 MPa	8 MPa
(styrene)	1 MPa (substrate failure)	1 MPa (substrate failure)		1 MPa (substrate failure)	1 MPa (substrate failure)
(PVC)	3.6 MPa (substrate failure)	3.6 MPa (substrate failure)		3.6 MPa (substrate failure)	3.6 MPa (substrate failure)
Impact Strength	4-9.5 J	4-9.5 J		4-9.5 J	4-9.5 J
CURED PROPERTIES			ALL 4C PF	RODUCTS	
Appearance		Colourless, transparent			
Softening Point		150-170°C			
Shore D Hardness			85		
Dielectric Strength			10,000 Volts/mm		
Service Temperature			-62 to +80°C		
Water Absorbtion			<2%		
Elongation			<5%		

Suitability of medical device grade cyanoacrylate on different plastics:

ABS	Excellent	
SBR	Excellent	
Acrylic	Good	
High-Impact Acrylic	Excellent	
Polystyrene	Excellent	
Polycarbonate	Excellent**	
PVC-Rigid	Excellent	
PVC-Flexible	Excellent	
Nylon	Poor long-term durability	
SAN	Excellent	
PBT	Excellent	
Polyphenylsulfone	Excellent	
**Uncured adhesive may cause stress cracking.		

Butyl cyanoacrylate 1001 PHYSICAL PROPERTIES OF THE UNCURED ADHESIVE:				
Base compound	Butyl cyanoacrylate			
Appearance	Violet transparent			
Viscosity @ 25°C	5 mPa.s			
Density	1.05			
Flash point	110°C			
PERFORMANCE OF CURED ADHESIVE:				
Softening point	150-170°C			
Dielectric strength	10,000 Volts/mm			
Water absorbtion	<2%			
Elongation	<5%			
Fixture time - Steel	<60 seconds			
-Buna N	<60 seconds			
-Phenolic	<60 seconds			
Lap shear strength - Steel	4.8 N/mm ²			

IMPORTANT: for tissue bonding adhesive, please contact Permabond

Permabond Medical Device UV-Adhesive Product Data

PHYSICAL PROPERTIES	4UV80	4UV80 HV	4UV80 HH
Appearance	Opaque, translucent	Opaque, translucent	Opaque, translucent
Viscosity @ 25°C	100-200 mPa.s	1800 - 2800 mPa.s	8000 - 12,000 mPa.s
Density	1.1	1.1	1.1
Flash Point	>100°C	>100°C	>100°C
Base Compound	Methacrylate ester	Methacrylate ester	Methacrylate ester
Cytotoxicity Approval	Pass	As 4UV80 with bio-inert filler	As 4UV80 with bio-inert filler

Permabond can produce custom formulations to match customer's specific viscosity requirements.

PERFORMANCE PROPERTIES		
Fixture Time (low-powered 4mW/cm ² lamp)		
Polycarbonate to polycarbonate	55 seconds	
Acrylic to acrylic	6 seconds	
PVC to PVC (rigid)	6 seconds	
PVC to PVC (flexible)	5 seconds	
Polycarbonate to ABS	55 seconds	
Shear Strength		
Polycarbonate to polycarbonate	>9 N/mm² SF	
PVC to PVC (rigid)	>5 N/mm² SF	
PVC to PVC (flexible)	>2.5 N/mm ² SF	
Polycarbonate to ABS	>7 N/mm² SF	

CURED PROPERTIES		
Appearance	Colourless, clear	
Shore D Hardness	60	
Tensile Strength	12 N/mm ²	
Elongation	110%	
Dielectric Strength	12 KV/mm	
Dielectric Constant 1MHz@25°C	4	
Service Temperature	-55°C to + 120°C	

SF = Substrate Failure

UV-Fluorescence: The 4UV80 range products are UV-fluorescent for easy in-line QC inspection. These products can be supplied without UV fluorescence if desired.

Light Sensitivity: The 4UV80 range is highly reactive to allow cure through difficult plastics. Should a less-active product be required due to strong factory lighting, Permabond can produce light insensitive versions of the above products.

OTHER MEDICALLY APPROVED UVS: Permabond UV630 series UV-curables have cytotoxicity approval.

*Other Permabond adhesives commonly used in medical device manufacture include acrylic adhesives, epoxy adhesives and anaerobic adhesives.

Two part epoxy **ET500** for glass to metal

Anaerobic MH052 for metal connections in oxygen delivery devices

Anaerobic A1042 for tamper proofing medical equipment case covers

Structural Acrylic **TA 440 A&B** for sealing attachment points of equipment carts, gurneys and stretchers.

*These products have not been tested for biocompatibility.

Disclaimer: PERMABOND ENGINEERING ADHESIVES LTD MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, CONCERNING THE SUITABILITY OF THESE MATERIALS FOR USE IN IMPLANTATION IN THE HUMAN BODY OR FOR ANY OTHER USE. These materials are not designed or manufactured for use in implantation in the human body. Permabond has not performed clinical testing of these materials for implantation or any other use. Permabond has neither sought, nor received, approval from the FDA for the use of these materials in implantation in the human body or any other use. Permabond recommends that all devices be tested for efficacy and biocompatibility by the device manufacturer. Cure process can affect biocompatibility.

Non-warranty: The information given and the recommendations made herein are based on our research and are believed to be accurate but no guarantee of their accuracy is made. In every case we urge and recommend that purchasers before using any product in full scale production make their own satisfaction whether the product is of acceptable quality and is suitable for their particular purposes under their own operating conditions.

No representative of ours has any authority to waive or change the foregoing provisions but, subject to such provisions, our engineers are available to assist purchasers in adapting our products to their needs and to the circumstances prevailing in their business. Nothing contained herein shall be construed to imply the nonexistence of any relevant patents or to constitute a permission, inducement or recommendation to practice any invention covered by any patent, without authority from the owner of this patent. We also expect purchasers to use our products in accordance with the guiding principle of the Chemical Manufacturers Association's Responsible Care@ program.